Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum.

نویسندگان

  • Sachiko Masuda
  • Shima Eda
  • Seishi Ikeda
  • Hisayuki Mitsui
  • Kiwamu Minamisawa
چکیده

Thiosulfate-oxidizing sox gene homologues were found at four loci (I, II, III, and IV) on the genome of Bradyrhizobium japonicum USDA110, a symbiotic nitrogen-fixing bacterium in soil. In fact, B. japonicum USDA110 can oxidize thiosulfate and grow under a chemolithotrophic condition. The deletion mutation of the soxY(1) gene at the sox locus I, homologous to the sulfur-oxidizing (Sox) system in Alphaproteobacteria, left B. japonicum unable to oxidize thiosulfate and grow under chemolithotrophic conditions, whereas the deletion mutation of the soxY(2) gene at sox locus II, homologous to the Sox system in green sulfur bacteria, produced phenotypes similar to those of wild-type USDA110. Thiosulfate-dependent O(2) respiration was observed only in USDA110 and the soxY(2) mutant and not in the soxY(1) mutant. In the cells, 1 mol of thiosulfate was stoichiometrically converted to approximately 2 mol of sulfate and consumed approximately 2 mol of O(2). B. japonicum USDA110 showed (14)CO(2) fixation under chemolithotrophic growth conditions. The CO(2) fixation of resting cells was significantly dependent on thiosulfate addition. These results show that USDA110 is able to grow chemolithoautotrophically using thiosulfate as an electron donor, oxygen as an electron acceptor, and carbon dioxide as a carbon source, which likely depends on sox locus I including the soxY(1) gene on USDA110 genome. Thiosulfate oxidation capability is frequently found in members of the Bradyrhizobiaceae, which phylogenetic analysis showed to be associated with the presence of sox locus I homologues, including the soxY(1) gene of B. japonicum USDA110.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cbbL gene is required for thiosulfate-dependent autotrophic growth of Bradyrhizobium japonicum.

Bradyrhizobium japonicum is a facultative chemolithoautotroph capable of using thiosulfate and H(2) as an electron donor and CO(2) as a carbon source. In B. japonicum USDA110, the mutant of cbbL gene encoding a large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was unable to grow using thiosulfate and H(2) as an electron donor. The cbbL deletion mutant was able to grow a...

متن کامل

Requirements for Efficient Thiosulfate Oxidation in Bradyrhizobium diazoefficiens

One of the many disparate lifestyles of Bradyrhizobium diazoefficiens is chemolithotrophic growth with thiosulfate as an electron donor for respiration. The employed carbon source may be CO₂ (autotrophy) or an organic compound such as succinate (mixotrophy). Here, we discovered three new facets of this capacity: (i) When thiosulfate and succinate were consumed concomitantly in conditions of mix...

متن کامل

Identification of the Hydrogen Uptake Gene Cluster for Chemolithoautotrophic Growth and Symbiosis Hydrogen Uptake in Bradyrhizobium Diazoefficiens

The hydrogen uptake (Hup) system of Bradyrhizobium diazoefficiens recycles the H2 released by nitrogenase in soybean nodule symbiosis, and is responsible for H2-dependent chemolithoautotrophic growth. The strain USDA110 has two hup gene clusters located outside (locus I) and inside (locus II) a symbiosis island. Bacterial growth under H2-dependent chemolithoautotrophic conditions was markedly w...

متن کامل

Gene Probe Designing for Evaluation of the Diversity of Bradyrhizobium japonicum Isolates

Many researchers consider the use of different probes for hybridization assays as suitable for studying the genetic diversity of nitrogen fixing bacteria. In this study for asessing genetic diversity among Bradyrhizobium japonicum isolates, two different probes (sucA and topA) chosen from the chromosomal genome of Bradyrhizobium strain USDA 110 were designed, evaluated by DNAMAN software and im...

متن کامل

Restriction of Nodulation by Bradyrhizobium japonicum Is Mediated by Factors Present in the Roots of Glycine max.

Reciprocal grafting experiments done using soybean plant introduction genotypes indicated that restriction of nodulation by Bradyrhizobium japonicum is determined by the genotype of the root and is dependent on plant growth temperature. Microscopic analyses indicated that the soybean plant introduction genotypes restrict nodulation of B. japonicum at symbiotic stages which occur both before and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 76 8  شماره 

صفحات  -

تاریخ انتشار 2010